Research Poster Creation

By Josh Harris
Media & Digital Resources Librarian
High Point University

http://www.utexas.edu/ugs/our/poster/samples
Assess

Consider the following questions as you prepare for your poster presentation:

Who will be the target audience for your research project?

What do you hope to accomplish with your poster presentation? Are you trying to:
- Inform your audience?
- Persuade your audience?
- Establish yourself as a reputable researcher?
- All of the above?

What will be expected and required of you at the presentation?
- An uninformed audience?
- A scholar from a different field?
- A scholar from your field?
Goals

• A well-designed, eye-catching, and engaging display of research
• Provides a brief overview of your work
• Guides readers through your project
• Promotes your work and area of expertise
• Initiates discussion
• Attracts attention
• Gives you something useful to point to as you discuss your work
• Stands alone when you are not there to provide explanation
Benefits to Scholarship

- Useful at all stages of research
- Promotion of your individual work, of your discipline and of the humanities and social sciences in general
- Opportunity to receive a great deal of feedback
- Forces one to think through arguments/thesis/central aspects of one’s work
- Helps one to develop precision, clarity, and concision in writing
- Provides practice writing abstracts and proposals
Develop Content

Title
• Select a title that effectively communicates the topic and significance of your project while retaining a professional tone. Avoid jargon and use terms all audience members will understand.

Collaborators and their institutional affiliations
• The order that you list the authors on the project matters a great deal. Check with your faculty supervisor for information on listing authors if you are working as part of a research team.

Introduction
• A succinct summary of your research project.

Background/literature review
• Make the case for your research question(s) and explain how your research contributes to the existing literature on the topic. This is not done all the time.

Research question(s)
• Provide a clear statement about the problem(s) you are trying to solve or the issue(s) you investigated.
Develop Content Continued

Materials and methods: data sources, study setting, study design, sample profile, data collection.
• This can be a brief description. Use visual aids to summarize information.
• What did you do to address your research question?
• What measure did you use? What sample did you use?
• Were there any manipulations, comparisons, or correlations of interest?
• What are the strengths and limitations of your methodology?

Results:
• What were the outcomes of your research? You can express results quantitatively or qualitatively.

Discussion and conclusion:
• What are the broader implications of your research and/or findings?
• Why should we care about this research project? What might future research look like?

Future directions:
• Did your research leave unanswered questions that could be explored in the future?
Develop Content Continued

Acknowledgements:
• Thank your funding source(s) and acknowledge help from others not on the list of authors.

Contact information:
• People are looking at your poster should be able to contact you, even if you are not standing next to the poster. You should provide your email address, and if applicable, a website that has information about the research.

Visual aids:
• You should use graphics and images to communicate information (if applicable). Not only will visual aids make your poster more interesting to look at, but they allow you to effectively tell your story without the use of lengthy text.
• Should relate to main points and conclusions, should give people a break from the text (but still relate to the text).
Organize

The space on a poster is too limited to present your entire research project. Extracting important ideas and organizing information efficiently is essential to the poster-design process.

Craft the Take-Away Message
• A poster is most effective when its focus is one core idea. Before you begin making your poster, write 100 words or less summarizing the purpose and findings of your research. Your poster should visually communicate this “take away” message.

Make Your Poster Easy to Read
• Avoid wordiness, unnecessary jargon, and abbreviations not commonly known
• Keep text fewer than 10 lines long
• Make lists of central ideas and grouped concepts
• Emphasize the first few words of a list in boldface or italics
Design

It’s always good to design a **first draft**:
- Create a **storyboard**
- Focus on **main point** and maintain a **willingness to “let go”**
- **Left-right layout**
 - People tend to look left to right and top to bottom to process information. You can help the visual flow of your poster with headings, arrows, and/or numbers that direct the viewer where to look next.
- Placement of main research question and findings top and center
- The bigger and more central something is, the more your viewers will notice it
- Think about an accompanying oral presentation
 - What might you say to people viewing your poster?
Design: Graphics

Using visual aids such as images, charts, graphs, timelines, and diagrams is a great way to make your poster less text-heavy and more visually appealing. Make sure your graphics are simple, consistent in scale, properly labeled, and legible from at least 3 feet away.

Photos:
Any photos added to a poster should be at least 300 ppi/dpi. Students should not simply copy and paste photos from the web. Website photos are typically 72ppi and will turn out fuzzy when they are blown up and printed.

Tip:
Use the “Zoom” option in PowerPoint or other poster making programs to see how your image will look at 100%.
Design: Graphics

Text Format:
Do not use more than two fonts on your poster. The most legible are serif fonts, such as Times New Roman and Garamond and sans serif fonts, such as Arial. The minimum text size for a poster is 16-26 pt (depending on the size of your poster). Headings should be between 30 and 60 pts, and the poster title should be over 72 pts.

Do not overuse capital letters or underlining because it makes text more difficult to read. Use bold or italicized type sparingly to emphasize certain text.
Design: Graphics

Colors:
Use a light color for the background and a dark color for the text. Avoid distracting viewers with patterns or complex images in the background. When using multiple colors to add emphasis, be consistent. Viewers tend to look for a pattern in a series of colors rather than absorb the information. Avoid bright or clashing colors that will exhaust the viewers’ eyes.

When using color to create contrast, remember that some people cannot distinguish between certain colors, such as red and green.

White Space:
Divide the sections of your poster logically by using empty, white space. If there is too much information to fit in white space, either take out some information or summarize the information more concisely.
How to Talk About Your Poster

Be Yourself:
You know a lot about your project, and you have an investment in it. Be confident that you know your subject. Your knowledge and excitement will come through.

Be Prepared and Engage the Audience:
Have a one or two minute mini-speech ready to go. When people begin looking at your poster, do not wait for them to ask a question. Just say, “Would you like to hear about my research in about two minutes or less?”

Offer to answer questions, and if you don’t know the answer just admit it and speculate with the person or ask what he or she might do. Point to figures and use them in your explanation.

Check regularly to make sure they’re following what you’re saying ("Does that make sense?").

Use Your Voice: to convey your ideas effectively, you need to speak with confidence. Try to have: **High Volume, Slow Speed, and avoid filler words (like um, uh, and like).**
Review Questions when Finalizing Poster (Before you print)

Does my poster have enough white space?

Are the text and graphics legible?

Is the flow of information logical?

Can I identify research questions?

Can I identify research methods?

Can I identify a take-home message or conclusion?

Have I clearly provided my contact information?

Have I provided the proper acknowledgements?

Have I shown the poster to my co-authors and/or faculty supervisor?
Using PowerPoint to Create Poster

Why use PowerPoint for posters?

• Ease of use
• Familiar tools
• Large format output
• Accessible to everyone on campus

• https://login.microsoftonline.com/
Setting up the Page

Software: Students commonly use Microsoft PowerPoint to design posters. If you want to try other programs, you can try Adobe InDesign, Illustrator, or Photoshop. These programs are not as intuitive to use.

Page Setup

Before you begin your poster layout, make sure that the page size is the same as your final print size. To change the page size in Microsoft PowerPoint, go to “File” and select “Page Setup” or “Design” and “Page Design.” The event where you are presenting may specify poster dimensions, but generally dimensions are 36x48 inches.
If you go to View – Gridlines, the PowerPoint will show you gridlines that will help you line up objects on your poster.
PowerPoint Tips

If working with text in Microsoft Word, you can copy and paste your text into the poster in PowerPoint.

You can also change the view while working on your poster. Go to View – Zoom. If you view your poster at 100% that is the same as Print Size.

Pay attention to your font as you create your poster. You should not use a font size smaller than 26 for your text. Make sure your title is easy to read.
Inserting Images

To insert a picture, go to Insert – Picture. Remember about the importance of having the image be around 300 dpi. It is always best to not blow up the image, but it’s okay to shrink the image.

It’s okay to get pictures off of the Internet, but pay attention to quality of the image you are saving and be sure to cite the webpage or source in your reference section on the poster.

To get an image off of the Internet you can right click or Control click and choose “Save Image As.”
Inserting Images

To see more about an image size and resolution, go to Image – Image Size in PhotoShop (or another photo editing program).

Here you can see the width and height in inches. Even when an image is really big, pay attention to the resolution.

You cannot determine the resolution of an image in PowerPoint. You must use an outside program to see the resolution.
Formatting Background and Text

To change the background color or design, go to Design – Background styles. For Mac, go to Format – Slide Background/Theme Colors.

You can also insert an image to be your background. Make sure the image you use as a background is a high resolution image.

You can insert text boxes anywhere on PowerPoint by going to Insert – Text.
SmartArt, Shapes, and Charts

Go to Insert – SmartArt. SmartArt allows you to add diagrams, flowcharts, boxes, and more. You can also go to Insert – Shapes and choose from a variety of boxes, circles, arrows, and more. You can also go to Insert – Charts to add a chart to visually display a graph, etc.
Poster Templates

You can design a poster from scratch using PowerPoint or you can download a research poster template.

Here are some websites to download free poster templates:

http://www.slidescarnival.com/category/free-templates

https://templates.office.com/en-gb/Posters

And many more . . .
Title, formatted in sentence case (Not Title Case and NOT ALL CAPS), that hints at an interesting issue and/or methodology, doesn’t spill onto a third line (ideally), and isn’t hot pink

Colin Purrington
666 Teipai Street, Posterville, PA 19801, USA

Introduction
Congratulations: a reader was mildly intrigued by your title. Now you have 2-3 sentences to hook him/her into reading more by describing what your question was and why the answer might be of general interest. Gratuitous background information will cause them to walk away (if you’re standing next to your poster, that can be awkward). Typography research has shown that body text is easier to read if you use a serif font such as Times. But non-serif fonts are great for title, headings, figure legends, etc. Research also shows that fully justified text (this paragraph) is slightly harder to read—even though it looks really cool.

Figure 1. A photograph in your introduction can help lure people to your otherwise non-photogenic research. It’s not your image, ask photographer for permission to use, and cite him/her.

Materials and methods
Few people, if any, really want to know the gruesome details of what you’ve been up to, so be brief. Use lightly-annotated photographs, drawings, or flow charts to visually convey your general experimental approach. To better engage viewers in your protocol or system, try attaching actual objects such as study organism (dead specimen), research gismo, photo Flip book, or a short movie (attach an old smartphone with Veico).

Figure 2. Hire an artist to illustrate the important step in your protocol. A photograph of you actually doing something might be nice, too. [image by John Snow 1853]

Results
The overall layout in this arena should be visually compelling, with clear cues on how a reader should travel through the components; be creative. You might want a large map with inset graphs, or have questions on left with arrows and supporting graphs on right. Be sure to separate figures from other figures by generous use of white space. When figures are too cramped, viewers get confused about which figures to read first and which legend goes with which figure.

If you can add small drawings or icons to your figures, those visual cues can be priceless aids in orienting viewers. And use colored arrows or callouts to focus attention on important parts of graphs. You can even put text annotations next to arrows to tell reader what’s going on that’s interesting in relation to the how the hypothesis is being evaluated. E.g., “This was most likely caused by contamination when I sneezed into tube #2.” Also, don’t be afraid of using colored connector lines to show how one part of a figure relates to another figure. These tips might induce gapes for published manuscript, but posters can be more personal and thus better guide viewers.

Figures are preferred but tables are sometimes unavoidable, like death. But go to great efforts to make it look professional. Look in a respected journal and emulate the layout, line types, line thickness, text alignment, etc., exactly. Again, use colored text or arrows to draw attention to important parts of the table. Paragraph format is fine, but so are bullet lists of results:

• 9 out of 12 brainstemized rats survived
• Brainstemized rats are at ease
• Control rats completed maze faster, on average, than rats without brains

Figure 3. Legends can briefly describe the experiment, answer the question, and even include statistics if you so choose (unlike a manuscript figure legend).

Do treatments differ in their effects?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Variable A (units)</th>
<th>Variable B (units)</th>
<th>Variable X (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 4. Label elements instead of relying on annoying keys that are default on most software. Add pictures of A and B if they are actually things (e.g., icons of rats with, without brain).

Are medians of treatment A and D different?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Variable A (units)</th>
<th>Variable B (units)</th>
<th>Variable X (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 5. Don’t be tempted to reduce font size in figure legends, axes labels, etc. This is because viewers are probably most interested in reading your figures and legends.

Conclusions
Conclusions should not be dry restatements of your results. You want to guide the reader through what you have concluded from results, and you need to state why those conclusions are interesting (i.e., don’t assume reader will guess). These first several sentences should refer back to the burning issue mentioned in the introduction. If you didn’t mention a burning issue in the introduction, fix that.

A good conclusion will also explain how your conclusions fit into the literature on the topic. E.g., how exactly does your research add to what is already published on the topic? It’s important to be humble and generous in this section, partly because authors of previous literature may still be alive and even attending the conference. You can also display your appreciation of others’ input by citing conversations you have had (with pet owners).

Finally, you want to tell readers who have lasted this long what might be done next and who should do it. E.g., are you currently taking the next logical step, or should another person with different skills follow up on your amazing result? It’s OK to put a bit of personality into this ending because viewers expect posters to be personal (and if you’re not actually standing there to convey your enthusiasm, your poster text should be doing that for you).

If you have a graphical way to express the next step of your hypothesis, by all means include it in this section. For example, you might make a graph with hypothetical data that shows an expected result in a future experiment. That’s something you normally don’t show in a traditional manuscript, but it’s totally fine for a poster.

If you’re curious, this poster has 683 words. Aim for 500 words. If you are above 1000 words, your poster will be annoying long to everyone except your collaborators. A well designed poster retains plenty of white space separating edges of text boxes, graphics, and tables. You also want space between your text and edge of box. Without white space a poster will looked cramped and uninviting.

Literature cited

Acknowledgments
We thank I. Gitter for laboratory assistance, Mary Juana for seeds, and Herb Isdale for greenhouse care. Funding for this project was provided by the Department of Thinkology. Note that people’s titles are omitted (titles are TMI).

Further information
More tips and templates can be found at “Designing conference posters”: http://colinpurrington.com/tips/academic/poster-design

http://colinpurrington.com/tips/academic/posterdesign
Example Posters

On the following slides are some posters that could use some improvement. Think about how you could make these posters look better designed as well as more professional.
Effects of electrical stimulation on Schwann cell migration on polypyrrole substrate

Jose Ybarra1, Leandro Forciniti2 & Christine Schmidt2

1School of Biological Sciences, 2Department of Biomedical Engineering, Cockrell School of Engineering

Background

- Nerve injuries affect about 100,000 people in the US every year
- Nerve damage is difficult to repair, and often does not heal on its own

Why Schwann cells?

- Successful treatment requires nerve cells to migrate across the injury
- Schwann cells are associated with nerve repair after injury
- Migrate to site of injury to protect endoneurial tube
- Direct nerve growth with growth factors
- Axons are known to be able to regenerate through conduits formed by proliferating Schwann cells
- Study effects of electrical stimulation on Schwann cell migration to optimize treatment

![Schwann Cells cultured on Ppy-Tosylate](http://www.utexas.edu/ugs/our/poster/samples)

Current Treatments:

- **Autologous nerve graft**
 - Requires donor nerve tissue to bridge injury gap (results in loss of function at donor site)
- **End to end connection**
 - Stretching the nerve causes tension which can result in pain and difficulty of use
- **Nerve Guidance Conduit**
 - Provides more efficient and natural treatment
 - Electrical stimulation has been shown to aid in recovery

Methods

- Electropolymerization of polypyrrole (Ppy) on Indium Tin Oxide (ITO) slides
- Three-electrode setup for Ppy electropolymerization
- Cell Culture/Electrical Stimulation Set-up
 - Cells are stimulated with constant current through the substrate via copper tape using a two-electrode set-up
- Migration assay:
 - Using a 10mm diameter ferrule for a well, cells are allowed to adhere to the substrate, and are observed for movement and imaged at 24, 36, and 48 hrs

Preliminary Results

- Unstimulated Cells
- Stimulated Cells
- Cell Viability

Conclusion

We hope to find that upon electrical stimulation of Schwann cells, the cells orient themselves and migrate in a specific direction (with the current, against the current, toward the cathode or anode, etc.). Specific migratory patterns could be used to optimize treatment using nerve guidance by affecting orientation and direction of the applied electrical field.

http://www.utexas.edu/ugs/our/poster/samples
Parasite Spillback Effects on Native Communities in New Zealand Streams and Lakes

What is parasite spillback?
Parasite spillback is a process that describes the feedback of native parasites from new host species to native hosts.

- First, native parasites infect introduced or invasive host species.
- With a new host, parasites flourish.
- Now, parasites return to native species with increased infection and disease rates.

Salmonids: Brown trout (Salmo trutta) (originating from Europe) and rainbow trout (Oncorhynchus mykiss (North America)) were first introduced to New Zealand waters in the late 19th century. Their effects on local and native stream communities as a non-indigenous species include lesser-studied effects such as parasite spillback and dilution.

Objectives
1. Test whether the presence of brown trout (Salmo trutta) and their parasite abundance is correlated to increased infection rates in four native species fish.
2. Identify for native fish and brown trout seasonal variations in infection intensity.
3. Understand the impact of parasites on host’s condition, survival, and reproductive potential through captive experimentation for all five host species. Parasite transmission to establishment is, and mortality in different host species will also be identified.
4. Use multi-host and shared-parasite stochastic simulation models.
5. Consider global implications of this model by applying it to an Argentine system and conducting a literature survey of the abundance of shared parasites in native and exotic freshwater fish.

Methods
- Analyze freshwater fish communities in lakes and streams
- Field surveys
- Host autopsies
- Infection trials
- Mathematical modeling

Presentation at the Bridging Disciplines Program Poster Session and Reception: April 25, 2009

My Experience
I spent five months interning with this project, conducting various lab and field tasks. In the laboratory, I counted the invertebrates from lake benthic sediment samples. I also conducted lipid analysis on galaxids, brown trout, and bully. In the field, I helped as we set nets and traps for fish. We also collected benthic sediment and zooplankton samples.

Discussion
Native species loss is a critical issue throughout the world in many different environments. This map from Conservation International shows biodiversity hotspots where over at least 70 percent of native species are already lost. The most biodiverse regions, including New Zealand, are also among the most at risk.

http://www.utexas.edu/ugs/our/poster/samples
Effect of Microbial Legacy on Nitrogen Cycle and Restoration Success

Tzu Chao, Clare Glinka, and Christine V. Hawkes
University of Texas at Austin

Introduction

*Nitrogen (N) cycle plays a key role in ecosystem and every transformation of the N cycle driven by microbes.
*Restoration attempts on converting abandoned rangelands in south Florida back to the native scrub ecosystems allow a unique opportunity to study persistent effects of previous vegetation left on the microbial community and ecological processes.
*Biological crust is essential for native ecosystem.

What is Crust?

*A surface layer of “Living Soil”, consisting primarily of cyanobacteria, algae, fungi and their byproducts.
*Supports many biological functions like N fixation and water infiltration control.

Questions

*How does native crust affect microbial legacy?
*Which impacts the N-cycle more? Microbial abundance or composition?

Field Site: Native scrub lands and abandoned pastures at Archbold Biological Station.

Sites are abandoned pastures and native scrub lands subjected to pasture removal treatments and crust addition treatment(Fig 2).

Method

*Biogeochemical
*KCl extraction
*Photosynthetic activity determine by fluorometry.
*Molecular approach
*PCR
*RFLP
*Direct sequence analysis

Possible mechanisms

*Pasture vegetation has caused a shift in soil microbe community and chemistry.
*Frequent disturbance favor more resilient microbes and changes community composition.

Sample restriction fingerprint

*DNA-based fingerprints allow characterization of community difference.
*Clone with other library will allow identification of species.

Soil Nitrogen, Photosynthetic Microbes Abundance, and Moisture changes over time and treatment

Possible mechanisms

*Inorganic nitrogen increases over time, and pasture sites both have higher inorganic nitrogen than the native.
*Crust treatment helps increase nitrogen fixation, but does not increase microbial abundance significantly.
*The microbial abundance does not track N, but does track moisture.
*Composition may be the more important factor in N-cycling.

Conclusion

*Crust addition decreases inorganic N, but does not affect microbial abundance.
*Native soil respond and tracks moisture.
*Inorganic N is not tracked by any site.
*Pastures site response to moisture unknown.

Acknowledgment

*This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, National Science Foundation and the Department of Defense.
*Special thanks to all members of the Hawkes lab, Juenger lab, and Manges Lab.
Bridging the Gap: Improving Access to Local Food in Austin Elementary Schools

Holly Harkrider - The University of Texas at Austin
College of Education - hollyharkrider@mail.utexas.edu

Research Questions:
What are the current barriers and affordances to local food access in Austin area elementary schools? What role do local food systems play in the diet and health of children?

Purpose:
To identify the barriers and affordances for incorporating local foods into school lunch programs and propose a plan for a future program model.

OBSTACLES BETWEEN FARMS & SCHOOLS

Background:
With over 28% of Texas currently suffering from food insecurity, we are in need of a way to become healthier and ensure positive outcomes for future generations (CDC, 2014). For many children, school lunches are the primary source of nutrition. In fact, Texas leads the nation in the number of children who miss meals - 1 in 5 meals (USA Today, 2015) - with the number of students who have food insecurity, why do more schools choose local food services to serve instead of purchasing from local farms in their communities? Local food:
- Is less processed and usually grown using fewer pesticides.
- Is fresher because it has spent less time in transit (NY Times, 2006).
- Supports the local economy.
- Travels a shorter distance, requires less fuel to transport and is therefore easier on the environment.
- Is less susceptible to biopesticides (Xerox, 2006).
- Helps to ensure positive futures for smaller farms.

Affordances
For Choosing Local Food
- School Food Service staff training
- Supportive legislation and public policy
- Teacher and school staff support
- Community and parent interest
- Wide availability of local farms and gardens
- Partnership with local NGOs

Barriers
To Getting Local Food In Schools
- Cost
- Knowledge and Equipment
- Awareness and Information
- Legal Issues
- Student Preferences
- Provided commodities by the USDA
- Logistics
- Produce growing season
- Incentives, revenue from FMNVs

AUSTIN FARMS
- Johnson's Block: Johnson's Block
- Biggby Creek Farms: Biggby Creek Farms
- Green Gate Farms: Green Gate Farms
- Green Gate Farms: Green Gate Farms
- Native Springs: Native Springs
- Urban Patchwork: Urban Patchwork
- Neighborhood Farm: Neighborhood Farm
- Bold Farms: Bold Farms, Orona Creek

PROPOSED METHODS:

Non-Governmental Organizations
- Local Farmers
- School District Staff
- Educators
- Public Policy

Local Farmers
- What makes local food successful? How can we make it sustainable?
- What kind of support would a local farmers cooperative need to create?
- Why do you think there are still a few barriers to local food in Austin?
- How do you think the public policy is impacting local food?

School District Staff
- What are the challenges you face with local food in your district?
- How do you think local food could be incorporated into the curriculum?
- What kind of support would a school district need to make local food successful?

Educators
- How do you think local food could be incorporated into the curriculum?
- What kind of support would a school district need to make local food successful?
- How do you think local food could be incorporated into the curriculum?

Public Policy
- How do you think the public policy is impacting local food?
- What kind of support would a school district need to make local food successful?
- How do you think local food could be incorporated into the curriculum?

And, according to documenã¿39ï¿39;org, there are 75 more local farms in the Austin area, at which 50 miles of our Capital Building.

http://www.utexas.edu/ugs/our/poster/samples
What Not to Do in a Research Poster
Printing at High Point University

High Point University, Smith Library offers high quality photograph and poster printing for academic purposes.

To find out about Media Services (including printing) go to our webpage:

http://www.highpoint.edu/library/media/

Remember: give media services or the print shop at least 24 hours to print your poster and be as specific as possible when ordering.

Poster sizes & prices:

- 36x48 = $15/poster
- 24x36 = $10/poster

We accept Passport General Fund as payment or can charge departments if you have faculty approval.
Contact Information

Feel free to come by media services or contact us for help or questions.

Media services is on the first floor of Smith Library.

Media general email: media@highpoint.edu
Media phone: 336-841-9103
References

Presentation made using:

“Guide to Creating Research Posters” found on the University of Texas Austin School of Undergraduate Studies website: http://www.utexas.edu/ugs/our/poster

“The Poster Presentation in the Humanities and Social Sciences” PowerPoint by Lisabeth Hock and Heather Dillaway.

“Creating Research Posters in PowerPoint by University of Saskatchewan – Training Services” YouTube video, http://www.youtube.com/watch?v=ny5nLSIPcPs

“Making an academic research poster using Power Point” by Jerry Overmyer of the University of Northern Colorado, YouTube video, http://www.youtube.com/watch?v=MqgjgwIxadA